
SBXG Documentation

SBXG Team

Jun 29, 2019

SBXG Reference Manual

1 The Philosophy of SBXG 3
1.1 Positions towards other tools . 3

2 How to install SBXG 5
2.1 Installing the dependencies . 5
2.2 Installing the SBXG python package . 5
2.3 Understand the use of each dependency . 6

3 How to use SBXG 7
3.1 Command-Line Interface . 7
3.2 Python API . 8

4 Understanding the SBXG Library 11
4.1 The toolchains/ subdirectory . 11
4.2 The configs/ subdirectory . 12
4.3 The sources/ subdirectory . 12
4.4 The bootscripts/ subdirectory . 12
4.5 The images/ subdirectory . 13
4.6 The boards/ subdirectory . 13

5 Templating Context 15
5.1 Top-level entries . 15
5.2 Toolchain data structure . 16
5.3 Download data structure . 16
5.4 Item data structure . 16
5.5 Genimage data structure . 16
5.6 Board data structure . 17

6 Machine Interface 19
6.1 Contents of the library . 19

7 How about the rootfs? 21

8 Tutorial: using the built-in library 23

9 Developping in SBXG 25
9.1 Setting-up the development environment . 25

i

10 Coding Practises 27
10.1 Coding Style . 27
10.2 Linting . 27
10.3 Tests . 27
10.4 Documentation . 28
10.5 Contributions . 28

ii

SBXG Documentation

SBXG is a build system generator specialized in building from sources low-level components that are the foundation
of Linux-based embedded devices, such as the U-Boot bootloader, the Linux kernel and the Xen hypervisor.

It is designed to offer a high level of reproductibility and tracability. Given that the URLs pointing to the different
components are always available, SBXG should always generate the same outputs for a given set of inputs. No surprise
to be expected.

On top of being able to build just the low-level components, SBXG can generate standalone images, ready to be
flashed on an SDcard or used as virtual machine disks. In this mode, SBXG expects the rootfs to be available, it does
not generate one.

All components (but the cross-compilation toolchain) are built from source, with a configuration file enforced by
version. This allows SBXG users to rely on the sources and their own (or pre-packaged) configurations, instead of a
black box downloaded from untrusted sources.

SBXG provides default configurations for some boards, toolchains, kernels and u-boot, to demonstrate its capabilities,
but one of its goal is to be able to use opaque (private) user configurations that can leave outside of SBXG (e.g. reside
in a dedicated source control repository).

Status of the project

SBXG is in omega stage (beyond alpha)! The documentation is being redacted, and some key features are being
developed.

SBXG Reference Manual 1

https://www.denx.de/wiki/U-Boot
https://www.kernel.org/
https://www.xenproject.org/

SBXG Documentation

2 SBXG Reference Manual

CHAPTER 1

The Philosophy of SBXG

To summarize the key-points of the introduction, SBXG is designed to offer a high level of reproductibility and
tracability when it comes to building the low-level components (Kernel, Bootloader) of a system. Configuration
should be trivial, easy to maintain and keep track of.

It only concentrates in building from source the low-level components, eventually putting them together in a final
image. In the later case, it expects the rootfs to be provided: it does not care about the roots. Even for kernel modules.
How you distribuate these components is up to you.

1.1 Positions towards other tools

SBXG is not a innovation. There (hopefully) exist many other tools able to build a kernel. However, we think that
SBXG fills a certain void when trying to generate Linux-based embedded systems, for which other tools do not offer
a (subjectively judged) acceptable answer.

1.1.1 Why not Buildroot?

Buildroot allows to build root file systems, a Linux kernel and the U-Boot bootloader. If you are interesed in creating
a self-contained, minimalistic and finely tailored to your needs, buildroot is the way to go. Don’t bother with us!
However, if your objective is to build only the low-level components, or a whole bunch of them, you should consider
using SBXG. Furthermore compiling these components with an explicit configuration (i.e. without fragments) is not
handy with buildroot: if you don’t modify buildroot itself, you are obliged to add some kind of layer on top of it to
generate a meaningful buildroot configuration.

1.1.2 Why not a simple shell script?

If your goal is just to build a couple of low-level components, a hand-crafted shell script is surely enough, given you
are familiar with their build systems.

3

https://buildroot.org/

SBXG Documentation

However, if you need to build a lot of them, SBXG may come handy, as it knows how to do. Also, if you want to
create a full sdcard image, things may become a bit more challenging. This is even more true when trying to put Xen
in the loop. SBXG knows how to do it. It should make things easier for you.

4 Chapter 1. The Philosophy of SBXG

CHAPTER 2

How to install SBXG

SBXG can be divided in two classes of components:

1. the core of SBXG itself, which is a python package; and

2. the run-time dependencies of SBXG, that are third-parties tools the generated build system will rely on.

2.1 Installing the dependencies

Only GNU/Linux distributions are supported. You may want to use the command-line that suits your distribution the
best.

2.1.1 Debian-based distributions (including Ubuntu)

sudo apt install git python3-pip make curl build-essential autoconf \
autotools-dev tar swig python-dev libconfuse-dev mtools

2.2 Installing the SBXG python package

There are no pip package

Currently, there is no pip package on Pypi. You are obliged to build from sources!

Currently, the only way to install SBXG is by downloading the sources and installing from these sources. So, you
must have git and pip3 installed. Then, run the following commands:

git clone https://github.com/sbxg/sbxg.git
pip3 install --user -r sbxg/requirements.txt
pip3 install --user sbxg

5

SBXG Documentation

2.3 Understand the use of each dependency

You may have noticed that SBXG requires quite some dependencies. We will explain here in which context they are
important.

Python 3.6 SBXG is written in python. This is a no-brainer, without python 3.6 or higher, you will not be able to run
SBXG at all.

Make SBXG bootstraps its build system, by generating a Makefile. Therefore, make (only GNU make is tested) is a
strong requirement for SBXG. No make, no possibiltiy to use SBXG’s generated files.

mkfs (ext3, vfat) To generate the final image, mkfs (ext3 and vfat) will be required.

curl and tar To download compressed tarballs from the internet, and extract them. This is typically used to retrieve
the toolchain and components to be built.

swig It seems that U-Boot requires swig to be built.

autotools SBXG will build from sources a package that uses the autotools. As such, the autotools programs needs to
be installed (e.g. autoconf, automake, . . .). This package is genimage.

kernel build essentials SBXG will compile the Linux Kernel and U-Boot. Hence, such a development environment
shall be installed.

6 Chapter 2. How to install SBXG

https://github.com/pengutronix/genimage

CHAPTER 3

How to use SBXG

SBXG is distributed as a python package, with a pre-defined entry point. It means you can use SBXG via its python
API or as a command-line tool. N

3.1 Command-Line Interface

Stability of the CLI

Currently, SBXG’s CLI is not stable. It means it can change at any time, without prior notice.

SBXG’s command-line works with different commands:

• show: to display information on SBXG’s files;

• gen (or generate): to generate a build system able to download and build various un-connected components
that share the same toolchain.

Note that SBXG accepts the following arguments before the commands. They will be applied to any command that
follows:

• --color: can be set to yes, no or auto, to respectively enable, disable or auto-detect if SBXG’s output
should contain colors.

• -I (or --lib-dir): specify a directory to populate SBXG’s components library. If no arguments are provided,
SBXG’s built-in library will be used. To understand what the library is, please refer to Understanding the SBXG
Library.

3.1.1 sbxg show

SBXG can display the contents of its library, which has been populated with the -I option. Take a look at Under-
standing the SBXG Library if you are unsure of what the library is.

This command will display in a human-readable way on the standard output:

7

SBXG Documentation

• what are the toolchains that are available;

• what are the linux, u-boot and xen sources available; and

• what are the linux, u-boot and xen configurations available.

Note that this command accepts the --mi option (for Machine Interface) that displays the same information but
serialized in JSON. This may come handy if used for scripting. Refer to Machine Interface for details.

3.1.2 sbxg gen

The gen command can be invoked with the following parameters:

• -L (or --linux-source): the name of a file describing how to retrieve the sources of a given version of the
Linux kernel.

• -U (or --uboot-source): the name of a file describing how to retrieve the sources of a given version of the
U-Boot bootloader.

• -X (or --xen-source): the name of a file describing how to retrieve the sources of a given version of the
Xen hypervisor.

• -l (or --linux-config) the name of a Kconfig file describing the various configuration parameters of a
given Linux profile.

• -u (or --uboot-config) the name of a Kconfig file describing the various configuration parameters of a
given U-Boot profile.

• -x (or --xen-config) the name of a Kconfig file describing the various configuration parameters of a given
Xen profile.

The following argument pairs must be used together:

• -L and -l;

• -U and -u;

• -X and -x.

Note that you can use as many arguments as you want. You can build a dozens of Linux kernels in one go for example,
as long as they are to be built with the same toolchain.

A cross-compilation toolchain can be specified with the -t or --toolchain option. Note that if this option is not
present, SBXG will assume you are building natively.

Architecture for cross-compilation

If you want to perform cross-compilation with the default toolchains, your host (the system that builds) MUST be x86.
We don’t provide toolchains that are not x86 binaries. You can however define your own toolchain.

It takes a mandatory positional argument that is the path to the directory in which SBXG will generate its build
system.

3.2 Python API

Stability of the Python API

8 Chapter 3. How to use SBXG

SBXG Documentation

Currently, SBXG’s python API is not stable. It means it can change at any time, without prior notice.

3.2. Python API 9

SBXG Documentation

10 Chapter 3. How to use SBXG

CHAPTER 4

Understanding the SBXG Library

SBXG heavily relies on its own library concept. It is a finite set of directories that conform to a well-specified file
hierarchy. This file hierarchy is explained in the present document.

The following directory hierarchy exposes all the different directories recognized as being part of an SBXG library.
Here, we assume the library is composed of a single directory, named sbxg/lib/:

sbxg/lib/
toolchains/
configs/
sources/
bootscripts/
images/
boards/

4.1 The toolchains/ subdirectory

The toolchains/ directory contains YAML files, each one describing a toolchain:

sbxg/lib/
toolchains

*.yml

A toolchain file may contain the following paramters:

Name Description
url URL where to download the toolchain from
path Extracted (tar -xf) directory
prefix Cross-compilation prefix
arch Linux and U-Boot architecture code name
xen_arch Xen architecture code name
host Typically, the prefix without underscore

11

https://yaml.org/

SBXG Documentation

When cross-compiling, all these parameters should be mandatory. Note however that native compilation currently
relies on the trick that some of these parameters may be not set or set to an empty string.

4.2 The configs/ subdirectory

The configs/ directory contains three subdirectories. Each of them contains Kconfig files that are used by Linux,
U-Boot and Xen to configure their build:

sbxg/lib/
configs

linux

*
uboot

*
xen

*

These files may or may not have an extension. By convention, their name should self-describe their purpose. For ex-
ample, a Linux 4.14 configuration file that allows to compile minimal Xen guests (domus) may be named: linux-4.
14-xen-domu-minimal.

4.3 The sources/ subdirectory

The sources/ directory contains four subdirectories. Each of them contains YAML files that describe how the
various components (Linux, U-Boot, Xen and genimage) may be retrieved:

sbxg/lib/
sources

genimage

*.yml
linux

*.yml
uboot

*.yml
xen

*.yml

A source file must contain the following paramters:

Name Description
url URL where to download the component from
path Extracted (tar -xf) directory

4.4 The bootscripts/ subdirectory

The bootscripts/ directory contains Jinja2 template files that must program the U-Boot bootloader at boot-time.
These files are associated with a templating context that is described in Templating Context. To learn more about
bootscripts, please refer to U-Boot’s website.

12 Chapter 4. Understanding the SBXG Library

https://yaml.org/
http://jinja.pocoo.org/
https://www.denx.de/wiki/DULG/UBootScripts

SBXG Documentation

sbxg/lib/
bootscripts

*

These files may or may not have an extension. By convention, their name should self-describe their purpose, and the
extension is always .j2 (but this is not mandatory). For example a boot script allowing U-Boot to boot a sunxi board
may be named: boot-sunxi-default.j2.

4.5 The images/ subdirectory

The images/ directory contains Jinja2 template files that describe how a disk image must be generated by genimage.
These files are associated with a templating context that is described in Templating Context.

sbxg/lib/
images

*

These files may or may not have an extension. By convention, their name should self-describe their purpose, and
the extension is always .j2 (but this is not mandatory). For example a genimage configuration describing a simple
SDcard partitioning may be named: sdcard-simple.j2.

4.6 The boards/ subdirectory

The boards/ directory contains YAML files, each one describing a board:

sbxg/lib
boards

*.yml

A board describes what low-level components should be compiled, and what binaries from these components should
be used to generate a final disk image. This file may contain the following top-level entries:

Name Description
toolchain Name of the toolchain to be used.
genimage Name of the genimage source to be used
linux Name of the Linux kernel source to be used
linux_config Name of the Linux Kconfig to be used
linux_image Filename of the Linux executable (e.g. zImage)
linux_dtb Filename of the Linux DTB to be used
uboot Name of the U-Boot source to be used
uboot_config Name of the U-Boot Kconfig to be used
uboot_image Filename of the U-Boot executable
boot_script Name of the bootscript to be templated
disk_image Name of the genimage configuration to be templated
root In the Kernel bootargs, path to the rootfs block device
rootfs URL to the rootfs (.ext3) to be used in the image
linux_bootargs Additional Linux bootargs to be specified

4.5. The images/ subdirectory 13

http://jinja.pocoo.org/
https://github.com/pengutronix/genimage
https://yaml.org/

SBXG Documentation

14 Chapter 4. Understanding the SBXG Library

CHAPTER 5

Templating Context

As explained in Understanding the SBXG Library, some files are to be templated by SBXG. Namely: the boot scripts
and images configurations. The underlying templating engine is Jinja2. Templating engines uses what is called a
templating context: it is the dataset used to output a meaningful result.

Since users are expected to create your own library to tweak SBXG to fit their needs, having a clear documentation of
this templating context is mandatory. It can be seen as a stable interface between SBXG and its users.

Currently, no promise is made of a stable interface

As we are still in early development, this may change.

Notion of canonical names

Later in this document, we will mention canonical names. These are litteral strings derived from the names of files
that are parts of the SBXG library. Canonical names are expected to be used by programming languages, such as GNU
make. Which implies that it shall be get rid of unexpected characters (dots, dashes, spaces, . . .). In the canonical
form, all the unwanted characters are replaced with underscores.

5.1 Top-level entries

The templating context will always contain the following top-level entries. Note that they may be set to None if not
available, but it is guaranteed that these keys will exist.

15

http://jinja.pocoo.org/docs/2.10/templates/

SBXG Documentation

Name Type Description
top_build_dir string Where components will be built
toolchain Toolchain Description of the toolchain
downloads list<Download> List of items to be downloaded
linuxes list<Item> List of the Linux kernels to be built
uboots list<Item> List of the bootloaders to be built
xens list<Item> List of the Xen hypervisors to be built
genimage Genimage Description of the genimage tool
board Board Description of the board

The types mentioned in this table will be detailed in the next sections.

5.2 Toolchain data structure

The Toolchain type is composed of following entries that were written in the YAML file that describes the toolchain.
See The toolchains/ subdirectory for details.

5.3 Download data structure

It should be no surprise that the build system generated by SBXG will attempt to download the sources of the compo-
nents to be built. What falls in the scope of a Download object is compressed tar archives containing sources. This
includes Linux, U-Boot, Xen and genimage. A download receives a name, that uniquely identifies it amongs others.
It also allows components to be built to depend on a download, by referring to its name.

Name Description
name Canonical name of the download
url URL where to fetch the component
archive Filename of the component to be downloaded

5.4 Item data structure

An Item describes either a Linux kernel, a U-Boot bootloader or a Xen hypervisor. All entries in an Item are of type
string. It is composed of the entries written in the YAML file that describes these components. See The sources/
subdirectory for details. In addition to these fields, the following entries are guaranteed to exist:

Name Description
config Full path to the associated Kconfig file
name Canonical name of the component
download Name of the associated download information

5.5 Genimage data structure

The Genimage type is composed of the entries written in the YAML file that describes genimage. See The sources/
subdirectory for details.

16 Chapter 5. Templating Context

SBXG Documentation

5.6 Board data structure

The Board type is a subset of the elements described in The boards/ subdirectory, which is defined by the following
entries:

• linux_dtb;

• linux_image;

• uboot_image;

• boot_script;

• disk_image;

• root;

• bootargs.

It comes with the following extraneous string entries:

Name Description
rootfs_url The URL where the rootfs resides
rootfs_path Filename of the rootfs after download

5.6. Board data structure 17

SBXG Documentation

18 Chapter 5. Templating Context

CHAPTER 6

Machine Interface

Some commands or python API that SBXG provides expose a machine interface, which means formatted data that a
script can easily takes as input.

6.1 Contents of the library

As explained in How to use SBXG, the sbxg show command accepts the --mi argument, that returns a JSON-
formatted string containing the contents of the library. This paragraph details the format of these data.

The top-level dictionary contains a set of keys that are all lists of two kinds of objects, that we name here Item and
TypedItem. A list of objects of type T will be noted list<T>.

Top-Level Keys Type Description
sources list<TypedItem> List of the sources
toolchains list<Item> List of the toolchains
configurations list<TypedItem> List of the Kconfig files
boards list<Item> List of the available boards
bootscripts list<Item> List of the boot scripts
images list<Item> List of the images descriptions

We now describe the Item and TypedItem objects:

Item Keys Type Description
name string Name of the item (e.g. value to be used)
path string Absolute path to the associated file

TypedItem Keys Type Description
name string Name of the item (e.g. value to be used)
path string Absolute path to the associated file
type string Type of the item (e.g. linux, xen, u-boot)

19

SBXG Documentation

20 Chapter 6. Machine Interface

CHAPTER 7

How about the rootfs?

As explained in the introduction, SBXG does not care about the Root Filesystem (rootfs). The rootfs is completely
out of the scope of SBXG, because it is a completely different class of problem that requires specialized tools, and a
awful lot lot of community work. Luckily, we already have tremendous work made openly available:

• Buildroot, to generate finely-tailored rootfs, mostly for embedded systems;

• Debootstrap, to retrieve pre-compiled Debian rootfs;

• DFT, a tool to heavily customize Debian rootfs.

• Gentoo stages, to generate or retrieve distribution-levels rootfs.

• And many, many more available choices. . .

21

https://buildroot.org/
https://wiki.debian.org/Debootstrap
https://github.com/wbonnet/dft
https://wiki.gentoo.org/wiki/Stage_tarball

SBXG Documentation

22 Chapter 7. How about the rootfs?

CHAPTER 8

Tutorial: using the built-in library

SBXG provides a built-in library, that can be extended by the users. This allows SBXG to provide users an out-of-the-
box experience.

First, to observe the contents of the built-in library, just run:

sbxg show

and something like this will appear:

List of toolchains:
- local
- armv7-eabihf

List of sources:
- linux: linux-4.14.35
- linux: linux-4.12.0
- uboot: uboot-2017.07
- xen: xen-4.8.3
- genimage: genimage-v11

List of configurations:
- linux: linux-4.12-sunxi
- linux: linux-4.14-sunxi-xen-dom0
- linux: linux-4.14-xen-domu
- uboot: uboot-2017.07-minimal
- xen: xen-4.8-sunxi

List of bootscripts:
- boot-sunxi-default.j2
- boot-sunxi-xen.j2

List of images:
- sdcard-simple.j2
- guest-simple.j2

(continues on next page)

23

SBXG Documentation

(continued from previous page)

List of boards:
- cubietruck-standalone

Now, imagine that you want to build a Linux kernel for a sunxi <https://linux-sunxi.org/Main_Page> board from your
x86 PC. You can see that SBXG provides a configuration for a 4.12 Linux kernel. Granted, this is quite old, but let’s
say you have an old version of SBXG ;)

So you are interested in the following elements:

• the toolchain (armv7-eabihf);

• the linux source (linux-4.12.0); and

• the linux configuration (linux-4.12-sunxi).

Just tell that to SBXG:

sbxg gen -L linux-4.12.0 -l linux-4.12-sunxi -t armv7-eabihf build

SBXG will work a bit, and if everything went right, it should end with exit code 0. In the build/ directory, you now
have a generated standalone Makefile. You can build everything by running make in this directory. You can even
pass to make the number of jobs to be used for building. It will be used to build the different components:

make -C build -j 3

Upon successful completion of this command, you will see the following directories:

build/
armv7-eabihf--glibc--stable-2018.02-2/
build_linux_4_12_sunxi/
downloads/
linux-4.12/
Makefile
stamps/

Let’s go through them one by one:

• armv7-eabihf--glibc--stable-2018.02-2/: this is where the toolchain was extracted.

• linux-4.12/: this is where the sources of the kernel were extracted.

• downloads/: you will find here compressed archives that were downloaded.

• stamps/: this contains files generated by the Makefile that allows make to only download the archives when
needed. Each file contains the URL from which the component was downloaded.

• build_linux_4_12_sunxi/: this is where the linux kernel was built. Note that SBXG performs builds
out-of-tree when possible.

Now that your kernel has been built, and now that you known where it was built, you can freely dispose of them. For
instance, the zImage resides in build/build_linux_4_12_sunxi/arch/arm/boot/.

24 Chapter 8. Tutorial: using the built-in library

CHAPTER 9

Developping in SBXG

9.1 Setting-up the development environment

SBXG is a python module, that requires python3.6 or higher. To make things simple, we advise you develop in a
virtualenv.

You shall begin by installing python3.6 or higher on your platform. Recent distributions should have it already in-
stalled. From now on, I assume that the program python3 is in your PATH, and that running:

python3 --version

yields something like:

$ python3 --version
Python 3.6.8

I will also assume that the associated program pip3 (pip for python3) is installed and in your PATH. Which means
that running:

pip3 --version

yields something like:

$ pip3 --version
pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.6)

We now can install the virtualenv package, if it does not already exist:

pip3 install --user virtualenv

Now, for every new clone of SBXG sources, you must create the virtualenv in the top source directory:

virtualenv --python=python3 .venv

25

https://virtualenv.pypa.io/en/stable/
https://pypi.org/project/pip/

SBXG Documentation

This will have for effect to create the directory .venv/ (which is already described in the .gitignore file) and
will contain your python environment when developping in SBXG.

Then, activate your virtualenv. If you have a POSIX-compatible shell, run:

. .venv/bin/activate

This will modify your current environment, so you can use the virtualenv. From now on, the python and pip
programs will be the ones of your virtualenv! Not the ones of your system.

Don’t forget to activate your virtualenv!

For every new interactive session (i.e. when you open a new terminal to develop in SBXG), you MUST activate your
virtualenv. Otherwise, you will not use it, and weird things may occur!

If you just created your virtualenv, you must install the appropriate python dependencies:

pip install -r requirements.txt

And you are good to go!

26 Chapter 9. Developping in SBXG

CHAPTER 10

Coding Practises

10.1 Coding Style

Hate it or love it, but SBXG shall conform to PEP8. Docstrings shall conform to PEP257. There is currently no strict
enforcement of these rules.

10.2 Linting

We use pylint to lint SBXG. It is not run automatically, because there’s nothing worse than seeing that your build fails
because of an extraneous whitespace, or a rightful TODO you added. Use the linter to help you code, don’t bow to it.

To lint, just run the following from the top source directory:

pylint

10.3 Tests

We use pytest to run SBXG’s tests. It is a bit unusual to test, because it has a lot of interactions with the filesystem,
which makes it not obvious to unit test it.

Also, since the goal of SBXG is to generate a build system, one of the possiblities to check that the build system was
correctly generated is to run it, and see what happens. That’s the simple and obvious method. Problem is that we
build sevaral Linux kernels. . . which take a lot of time to be downloaded and built. So, testing the correctness of the
generated file is not that trivial after all. Currently, we run the generated Makefile for a single case that should cover
most of the usecases, but it is not systematically executed.

To run the tests, just run the following from the top source directory:

pytest

27

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.pylint.org/
https://docs.pytest.org

SBXG Documentation

10.4 Documentation

Documentation is obviously very important. It’s not always clear what to write, and how it should be written, but
we try to figure out as we grow. Documentation, which is often looked down upon by developers tries to be a first-
class citizen in SBXG. It demands work and dedication, but you’ll get used to it. We use Sphinx to manage the
documentation.

To build the documentation, run the following from the top source directory:

make -C doc html

10.5 Contributions

This is currently a mess.

TODO.

28 Chapter 10. Coding Practises

http://www.sphinx-doc.org/en/master/index.html

	The Philosophy of SBXG
	Positions towards other tools

	How to install SBXG
	Installing the dependencies
	Installing the SBXG python package
	Understand the use of each dependency

	How to use SBXG
	Command-Line Interface
	Python API

	Understanding the SBXG Library
	The toolchains/ subdirectory
	The configs/ subdirectory
	The sources/ subdirectory
	The bootscripts/ subdirectory
	The images/ subdirectory
	The boards/ subdirectory

	Templating Context
	Top-level entries
	Toolchain data structure
	Download data structure
	Item data structure
	Genimage data structure
	Board data structure

	Machine Interface
	Contents of the library

	How about the rootfs?
	Tutorial: using the built-in library
	Developping in SBXG
	Setting-up the development environment

	Coding Practises
	Coding Style
	Linting
	Tests
	Documentation
	Contributions

