
SBXG Documentation

Jean Guyomarc’h

Jun 24, 2019

Contents:

1 SBXG Requirements 3

2 Packages Installation 5

3 Starting Up with SBXG 7
3.1 Cubietruck Default . 8
3.2 Cubietruck with Xen (1 guest) . 8

4 How Do I Do That? 11
4.1 I want to compile a single component . 11
4.2 I want to generate a firmware image . 12

5 SBXG Configuration 13
5.1 Search Path . 13
5.2 SBXG’s Board Directory . 14
5.3 SBXG’s Library Directory . 15

i

ii

SBXG Documentation

SBXG is a build system that generates bootable images for embedded devices. The images generation is highly
customizable, but is mainly composed of:

• a bootloader: U-Boot,

• a kernel: Linux,

• and a foreign root file system (e.g. generated with DFT or Debootstrap).

All components but the toolchain are built from source, with a configuration file enforced by version. This allows
SBXG users to rely on the sources and their own (or pre-packaged) configurations, instead of a black box downloaded
from untrusted sources.

SBXG provides default configurations for some boards, toolchains, kernels and u-boot, to demonstrate its capabilities,
but one of its goal is to be able to use opaque (private) user configurations that can leave outside of SBXG (e.g. reside
in a dedicated source control repository).

This guide explains in details how to hack SBXG to develop your own configurations, to forge system software for
your embedded boards.

Contents: 1

https://www.denx.de/wiki/U-Boot
https://www.kernel.org/
https://github.com/wbonnet/dft
https://wiki.debian.org/Debootstrap

SBXG Documentation

2 Contents:

CHAPTER 1

SBXG Requirements

Python SBXG relies on third-party tools to fulfull its duty. Its core is written with Python. Python 2.7 will do, but it
is advised to use Python 3.4 or later.

Make SBXG bootstraps its build system, by generating a Makefile. Therefore, make (only GNU make is tested) is a
strong requirement for SBXG.

Subcomponent Subcomponent is used to fetch the components that SBXG depends on. It is packaged as a cargo
crate, and therefore can be installed directly from cargo.

mkfs (ext3, vfat) To generate an image, mkfs (ext3 and vfat) will be required.

autotools SBXG will build from sources a package that uses the autotools. As such, the autotools programs needs to
be installed (e.g. autoconf, automake, . . .)

kernel build essentials SBXG will compile the Linux Kernel and U-Boot. Hence, such a development environment
shall be installed.

3

https://www.python.org/
https://github.com/subcomponent/subcomponent

SBXG Documentation

4 Chapter 1. SBXG Requirements

CHAPTER 2

Packages Installation

SBXG provides per GNU/Linux distribution scripts to install the necessary packages. They are contained within the
utils/ directory, in the top source directory. Run the script associated to your distribution.

5

SBXG Documentation

6 Chapter 2. Packages Installation

CHAPTER 3

Starting Up with SBXG

SBXG will retrieve and build bootloaders and kernels (e.g. U-Boot, Linux, Xen), but does not create nor configure a
root file system! This task is up to you, or dedicated tools that you chose to use. However, SBXG proposes a “toy”
script that creates a minimal Debian root file system from scratch so you can use SBXG, even when you don’t have a
root file system.

SBXG proposes various built-in configurations. In function whether these offer support for Xen or not, different root
file systems may be needed. This document proposes the command-line sequences to be paired with the default options
proposed by SBXG. They all assume a POSIX shell is being used (e.g. bash), and are initiated from the top source
directory of SBXG.

7

SBXG Documentation

3.1 Cubietruck Default

mkdir build && cd build
../scripts/create-debootstrap.sh
../bootstrap.py --board cubietruck --toolchain armv7-eabihf
make

3.2 Cubietruck with Xen (1 guest)

mkdir build && cd build
sudo ../scripts/create-debootstrap.sh -x
sudo ../scripts/create-debootstrap.sh -o guest0_rootfs.ext3

(continues on next page)

8 Chapter 3. Starting Up with SBXG

SBXG Documentation

(continued from previous page)

../bootstrap.py --board cubietruck --board-variant xen --toolchain armv7-eabihf
make

3.2. Cubietruck with Xen (1 guest) 9

SBXG Documentation

10 Chapter 3. Starting Up with SBXG

CHAPTER 4

How Do I Do That?

4.1 I want to compile a single component

You first need to take a look at the files known to SBXG, by running the bootstrap.py script with the
--show-library option:

$./bootstrap.py --show-library

List of available boards (with variants):
- cubietruck (xen)
- virtual (vexpress-v7)
- orangepi-zero

List of sources:
- uboot: 2017.07
- xen: 4.8.0
- toolchain: local
- toolchain: armv7-eabihf
- kernel: linux-4.12.0
- busybox: 1.27.1

List of configurations:
- bootscript: boot-sunxi-default
- bootscript: boot-sunxi-xen
- uboot: 2017.07-minimal
- xen: 4.8-sunxi
- kernel: linux-4.12-sunxi
- kernel: linux-4.12-sunxi-xen-dom0
- kernel: linux-4.12-xen-domu
- busybox: minimal

11

SBXG Documentation

4.1.1 I want to compile just a kernel

From the list that is shown to you, you must pick:

• a kernel to be compiled (in the List of sources),

• a kernel configuration (in the List of configurations),

• a toolchain (in the List of sources).

Make sure that all parameters are coherent together. For instance, do not pick a Xen configuration for a Linux kernel,
or a Linux 3.4 configuration when you are trying to build a Linux 4.14. Configurations are also linked to a given
architecture or SoC (e.g. cubietruck/sunxi), so make sure the toolchain you select is coherent with the product you
want to build.

For instance, if you want to cross-build a Linux 4.12.0 for a Cubietruck (sunxi):

bootstrap.py --kernel linux-4.12.0 linux-4.12-sunxi
--toolchain armv7-eabihf

4.1.2 I want to compile just a bootloader

From the list that is shown to you, you must pick:

• a U-Boot to be compiled (in the List of sources),

• a U-Boot configuration (in the List of configurations),

• a toolchain (in the List of sources).

For instance, if you want to build a U-Boot 2017.07 locally (assuming an ARM host):

bootstrap.py --uboot 2017.07 2017.07-minimal
--toolchain local

4.1.3 I want to compile just Xen

From the list that is shown to you, you must pick:

• a Xen to be compiled (in the List of sources),

• a Xen configuration (in the List of configurations),

• a toolchain (in the List of sources).

For instance, if you want to cross-build a Xen 4.8.0 for a sunxi SoC:

bootstrap.py --xen 4.8.0 4.8-sunxi
--toolchain armv7-eabihf

4.2 I want to generate a firmware image

TODO :/

12 Chapter 4. How Do I Do That?

CHAPTER 5

SBXG Configuration

SBXG relies on two search paths that provide its configuration:

• the board search path and

• the lib search path.

These two concepts will be explained in further details in the following sections. If no search path is specified, SBXG
will assume the directories board/ and lib/ in the source source directory of SBXG.

5.1 Search Path

SBXG’s configuration consist in a collection of structured files. These structures reside in entries called the search
paths.

If one needs to develop its own configuration, and wish to make it private (outside of SBXG), it shall replicate the file
hierarchy described in the following sections, and set the search paths to the directorys containing this new hierarchy.

The first search path is the library. It contains configurations files that allow to retrieve and compile the various
components that SBXG supports.

The second search path consists of boards configurations. These are files that describe how several components shall
be aggregate together to generate a single firmware image. If you want to only build components without creating a
firmware image, you do not need this.

You can call the --show-lib option of the bootstrap.py script to print the files that SBXG will look for. For
example, from SBXG top source directory:

$./boostrap.py --show-lib
List of available boards (with variants):

- cubietruck (xen)
- virtual (vexpress-v7)
- orangepi-zero

List of sources:

(continues on next page)

13

SBXG Documentation

(continued from previous page)

- uboot: 2017.07
- xen: 4.8.2
- toolchain: local
- toolchain: armv7-eabihf
- kernel: linux-4.14.8
- kernel: linux-4.14.6
- kernel: linux-4.14.17
- kernel: linux-4.12.0
- busybox: 1.27.1

List of configurations:
- bootscript: boot-sunxi-default
- bootscript: boot-sunxi-xen
- uboot: 2017.07-minimal
- xen: 4.8-sunxi
- kernel: linux-4.12-sunxi
- kernel: linux-4.12-sunxi-xen-dom0
- kernel: linux-4.14-sunxi-xen-dom0
- kernel: linux-4.12-xen-domu
- kernel: linux-4.14-xen-domu
- busybox: minimal

When providing configuration or source files to SBXG, you will need to pass one of these files.

5.2 SBXG’s Board Directory

First, let’s start with an example:

boards/
cubietruck

board.yml
images

default.j2
xen.yml

orangepi-zero
board.yml
images

default.j2
virtual

images
guest.j2

vexpress-v7.yml

Each subdirectory in boards/ (which is the default directory searched by SBXG) holds the configuration files for a
given board. In our example, we have three supported boards:

• Cubietruck,

• OrangePiZero,

• virtual (as a based to build virtual machines).

Within each of these directories board.yml is the default configuration file that describes how different components
are aggregated together. You may want to have several configurations. These are called variants in SBXG’s termi-
nology. An example is given by cubietruck/xen.yml, which is an alternative configuration to cubietruck/
board.yml. Notice the directories images/. They contain genimage configuration and describe the layout of the

14 Chapter 5. SBXG Configuration

https://linux-sunxi.org/Cubietruck
http://linux-sunxi.org/Xunlong_Orange_Pi_Zero
https://github.com/pengutronix/genimage

SBXG Documentation

firmware image.

5.3 SBXG’s Library Directory

First, let’s start with an example:

lib
configs

bootscripts
boot-sunxi-default.j2
boot-sunxi-xen.j2

busybox
minimal

kernel
linux-4.12-sunxi
linux-4.12-sunxi-xen-dom0
linux-4.12-xen-domu
linux-4.14-sunxi-xen-dom0
linux-4.14-xen-domu

uboot
2017.07-minimal

xen
4.8-sunxi

sources
busybox

1.27.1.yml
kernel

linux-4.12.0.yml
linux-4.14.17.yml
linux-4.14.6.yml
linux-4.14.8.yml

toolchain
armv7-eabihf.yml
local.yml

uboot
2017.07.yml

xen
4.8.2.yml

There are two directories within the library search path:

• sources/: where configurations to fetch components reside: * busybox/: to retrieve Busybox * kernel/
: to retrive the principal kernel (e.g. Linux base or Xen Dom 0), * toolchain/: to retrive the compilation
toolchain, * uboot/: to retrive the boot loader, * xen/: to retrieve the Xen ARM hypervisor.

• configs/: where configurations to compile components reside: * bootscripts/: available boot scripts , *
busybox/: per-Busybox version configurations, * kernel/: per-Linux version configurations, * u-boot/:
per-U-boot version configurations, * xen/: per-Xen version configurations.

5.3. SBXG’s Library Directory 15

https://busybox.net

	SBXG Requirements
	Packages Installation
	Starting Up with SBXG
	Cubietruck Default
	Cubietruck with Xen (1 guest)

	How Do I Do That?
	I want to compile a single component
	I want to generate a firmware image

	SBXG Configuration
	Search Path
	SBXG’s Board Directory
	SBXG’s Library Directory

